Муниципальное бюджетное общеобразовательное учреждение «Толстянская средняя общеобразовательная школа» Губкинского района Белгородской области

«Утверждено» «Согласовано» «Рассмотрено» Директор Заместитель директора На заседании МС школы МБОУ «Толстянская СОШ» МБОУ «Толстянская Агафонова З.И. Протокол № 5 от СОШ» « 31» ОХ 2021 г. Н.Н. Иванова 2021 г. «30» 08 2021 г.

Рабочая программа по учебному предмету «Математика» для 10-11 классов (углубленный уровень)

Составитель: Ишкова Лариса Федоровна, учитель математики

I. ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Рабочая программа **по математике 10-11 класс (углубленный уровень)** разработана на основе нормативных документов:

- 1. Федерального закона «Об образовании в Российской Федерации» от 29.12.2012 N 273-ФЗ (ред. от 13.07.2015) "Об образовании в Российской Федерации" (с изм. и доп., вступ. в силу с 24.07.2015);
- 2. Федерального государственного стандарта основного общего образования» (Приказ Министерства образования и науки РФ от 17 мая 2012 г. N 413);
- 3. Математика. Сборник рабочих программ. 10-11 классы: пособие для учителей общеобразовательных организаций / [сост. Т.А. Бурмистрова]. 5-е изд. М.: Просвещение, 2018.
- 4. Федерального переченя учебников, рекомендованных и допущенных Министерством образования и науки по Приказу от 20 мая 2020 г. № 254 МО РФ 2020 ООП НОО, ООП ООО, одобренных Федеральным учебно-методическим объединением по общему образованию (с изменениями приказ №766 от 23 декабря 2020 года);
- 5. Образовательной программы среднего общего образования муниципального бюджетного общеобразовательного учреждения «Толстянская средняя общеобразовательная школа»

Рабочая программа обеспечена учебно-методическим комплексом:

- 1. С.М. Никольский, М.К.Потапов, Н.Н.Решетников, А.В.Шевкин «Алгебра и начала математического анализа 10 класс», М.: Просвещение, 2020г,
- 2. С.М. Никольский, М.К.Потапов, Н.Н.Решетников, А.В.Шевкин «Алгебра и начала математического анализа 11 класс», М.: Просвещение, 2020г,
- 3. Л. С. Атанасян, В. Ф. Бутузов, С. В. Кадомцев и др. Геометрия 10—11 кл, М.: Просвещение, 2020г.

II. Цели и задачи, решаемые при реализации рабочей программы Цели обучения:

√ В направлении личностного развития:

- формирование представлений о математике, как части общечеловеческой культуры, о значимости математики в
- развитии цивилизации и современного общества;
- \bullet развитие логического и критического мышления, культуры речи, способности к умственному эксперименту;
- формирование интеллектуальной честности и объективности, способности к преодолению мыслительных стереотипов, вытекающих из обыденного опыта;
- воспитание качеств личности, обеспечивающих социальную мобильность, способность принимать самостоятельные решения;
- формирование качеств мышления, необходимых для адаптации в современном информационном обществе;
- развитие интереса к математическому творчеству и математических способностей;
- уважение к своему народу, чувство ответственности перед Родиной, гордости за свой край, свою Родину, прошлое и настоящее многонационального народа России;
- готовность обучающихся к конструктивному участию в принятии решений, затрагивающих их права и интересы, в том числе в различных формах общественной самоорганизации, самоуправления, общественно значимой деятельности;
- развитие компетенций сотрудничества со сверстниками, детьми младшего возраста, взрослыми в образовательной, общественно полезной, учебно-исследовательской, проектной и других видах деятельности.
- готовность и способность к образованию, в том числе самообразованию, на протяжении всей жизни; сознательное отношение к непрерывному образованию как условию успешной профессиональной и общественной деятельности;
- осознанный выбор будущей профессии как путь и способ реализации собственных

жизненных планов.

✓ В метапредметном направлении:

- развитие представлений о математике как форме описания и методе познания действительности, создание условий для приобретения первоначального опыта математического моделирования;
- формирование общих способов интеллектуальной деятельности, характерных для математики и являющихся основой познавательной культуры, значимой для различных сфер человеческой деятельности;
- самостоятельно определять цели, задавать параметры и критерии, по которым можно определить, что цель достигнута;
- оценивать ресурсы, в том числе время и другие нематериальные ресурсы, необходимые для достижения поставленной цели;
- выбирать путь достижения цели, планировать решение поставленных задач, оптимизируя материальные и нематериальные затраты;
- сопоставлять полученный результат деятельности с поставленной заранее целью.
- искать и находить обобщенные способы решения задач, в том числе, осуществлять развернутый информационный поиск и ставить на его основе новые задачи;
- выходить за рамки учебного предмета и осуществлять целенаправленный поиск возможностей для широкого переноса средств и способов действия;
- координировать и выполнять работу в условиях реального, виртуального и комбинированного взаимодействия;

✓ В предметном направлении:

- овладение ключевыми понятиями и закономерностями, на которых строится данная предметная область, распознавание соответствующих им признаков и взаимосвязей, способность демонстрировать различные подходы к изучению явлений, характерных для изучаемой предметной области;
- умение решать как некоторые практические, так и основные теоретические задачи, характерные для использования методов и инструментария данной предметной области;
- наличие представлений о данной предметной области как целостной теории (совокупности теорий), об основных связях с иными смежными областями знаний.

Задачи:

- развить логического мышления учащихся;
- формирование научно-теоретического мышления школьников;
- овладеть системой математических знаний и умений, необходимых для применения в практической деятельности, изучении смежных дисциплин;
- способствовать интеллектуальному развитию, формировать качества, необходимые человеку для полноценной жизни в современном обществе, свойственные математической деятельности: ясности и точности мысли, интуиции, логического мышления, пространственных представлений, способности к преодолению трудностей;
- формировать представления об идеях и методах математики как универсального языка науки и техники, средствах моделирования явлений и процессов;
- воспитывать культуру личности, отношение к математике как части общечеловеческой культуры, играющей особую роль в общественном развитии.

Практическая значимость школьного курса алгебры и начал математического анализа обусловлена тем, что его объектами являются фундаментальные структуры и количественные отношения действительного мира. Математическая подготовка необходима для понимания принципов устройства и использования современной техники, восприятия научных и технических понятий и идей. Математика является языком науки и техники. С её помощью моделируются и изучаются явления и процессы, происходящие в природе.

Изучение курса алгебры и начал математического анализа существенно расширяет кругозор учащихся, знакомя их с индукцией и дедукцией, обобщением и конкретизацией, анализом и

синтезом, классификацией и систематизацией, абстрагированием, аналогией. Активное использование задач на всех этапах учебного процесса развивает творческие способности школьников. При обучении алгебре и началам математического анализа формируются умения и навыки умственного труда — планирование своей работы, поиск рациональных путей её выполнения, критическая оценка результатов. В процессе обучения школьники должны научиться излагать свои мысли ясно и исчерпывающе, лаконично и ёмко, приобрести навыки чёткого, аккуратного и грамотного выполнения математических записей.

III. Общая характеристика курса

Математическое образование играет важную роль и в практической, и в духовной жизни общества. Практическая сторона связана с созданием и применением инструментария, необходимого человеку в его продуктивной деятельности, духовная сторона — с интеллектуальным развитием

человека, формированием характера и общей культуры.

Без конкретных знаний по математике затруднено понимание принципов устройства и использования современной техники, восприятие и интерпретация разнообразной социальной, экономической, политической информации, малоэффективна повседневная практическая деятельность. Каждому человеку в своей жизни приходится выполнять расчёты, читать информацию, представленную в виде таблиц, диаграмм, графиков, понимать вероятностный характер случайных событий, составлять несложные алгоритмы и др. Изучение данного курса завершает формирование ценностно-смысловых установок и ориентаций учащихся в отношении математических знаний и проблем их использования в рамках среднего общего образования. Курс способствует формированию умения видеть и понимать их значимость для каждого человека независимо от его профессиональной деятельности; умения различать факты и оценки, сравнивать оценочные выводы, видеть их связь с критериями оценок и связь критериев с определённой системой ценностей.

Без базовой математической подготовки невозможно представить образование современного человека. В школе математика служит опорным предметом для изучения смежных дисциплин. Реальной необходимостью в наши дни становится непрерывное образование, что требует полнопен-

ной базовой общеобразовательной подготовки, в том числе и по алгебре и началам математического анализа.

Для жизни в современном обществе важным является формирование математического стиля мышления. Объекты математических умозаключений и правила их конструирования вскрывают механизм логических построений, вырабатывают умения формулировать, обосновывать и доказывать суждения, тем самым развивают логическое мышление.

IV. Место предмета « Математика» в учебном плане

В соответствии с Федеральным базисным учебным планом для образовательных учреждений Российской Федерации и учебным планом образовательной организации МБОУ «Толстянская СОШ» рабочая программа реализуется в объеме - 408 ч:

Согласно Базисного учебного (образовательного) плана в 10-11 классах изучается предмет «Математика» (включающий разделы «Алгебра и начала математического анализа» и «Геометрия»). На изучение математики в классах с углубленным изучением математики отводится 6 учебных часов в неделю в течение каждого года обучения.

Классы	Предметы математического цикла	Количество часов на ступени основного образования
	Математика (Алгебра)	272 часа (4 ч * 34 недели * 2 года)
10-11	Математика (Геометрия)	136 часов (2 ч * 34 недели * 2 года)
Всего		408 часов

V. Результаты освоения курса

Личностные результаты:

- Воспитание патриотизма, уважения к Отечеству, осознание вклада отечественных ученых в развитие мировой науки.
- формирование у учащихся интеллектуальной честности и объективности, способности к преодолению мыслительных стереотипов, вытекающих из обыденного опыта;
- воспитание качеств личности, обеспечивающих социальную мобильность, умение взаимодействовать с одноклассниками в процессе учебной деятельности; способность принимать самостоятельные решения;
- формирование качеств мышления, необходимых для адаптации в современном информационном обществе;
- развитие логического и критического мышления, инициативы, находчивости, активности при решении математических задач; культуры речи, способности к умственному эксперименту;
- умение контролировать, оценивать и анализировать процесс и результат учебной и математической деятельности;
- умение самостоятельно работать с различными источниками информации; Метапредметные результаты:
- умение определять цели, формулировать учебные задачи, развивать мотивы и интересы своей познавательной деятельности;
- умение соотносить свои действия с планируемыми результатами, осуществлять контроль своей деятельности, определять способы действий и корректировать их в соответствии с ситуацией;
- уметь определять понятия, выявлять их свойства и признаки, создавать обобщения, устанавливать аналогии, классифицировать, самостоятельно выбирать основания для классификации;
- устанавливать причинно-следственные связи, строить логические рассуждения и доказывать их, умозаключение и делать выводы;
- умение иллюстрировать изученные понятия и свойства фигур, опровергать неверные утверждения;
- развитие компетентности в области ИКТ;
- представления о математике как об универсальном языке науки и технике, о средстве моделирования явлений и процессов;
- умение видеть математическую задачу в контексте проблемной ситуации в окружающей жизни;
- умение правильно и доступно излагать свои мысли в устной и письменной форме;
- умение работать с информацией: искать ее, представлять в понятной форме, работать с недостаточной, избыточной, точной или вероятностной информацией;
- умение обрабатывать и анализировать полученную информацию;
- умение работать с математическими средствами наглядности (графики, таблицы, схемы, ...)
- умение выдвигать гипотезы при решении задач и доказывать их;
- понимать смысл алгоритмов и уметь с ними работать;
- умение находить различные способы решения математической задачи, решать практические и познавательные задачи;
- приобретение опыта выполнения проектной деятельности; Предметные результаты за курс:
- сформированность представлений о необходимости доказательств при обосновании математических утверждений и роли аксиоматики в проведении дедуктивных рассуждений;
- сформированность понятийного аппарата по основным разделам курса математики; знаний основных теорем, формул и умения их применять; умения доказывать теоремы и находить нестандартные способы решения задач;

- сформированность умений моделировать реальные ситуации, исследовать построенные модели, интерпретировать полученный результат;
- сформированность представлений об основных понятиях математического анализа и их свойствах, владение умением характеризовать поведение функций, использование полученных знаний для описания и анализа реальных зависимостей;
- владение умениями составления вероятностных моделей по условию задачи и вычисления вероятности наступления событий, в том числе с применением формул комбинаторики и основных теорем теории вероятностей; исследования случайных величин по их распределению. Предметные результаты

10 класс

Обучающийся научится понимать:

- значение математической науки для решения задач, возникающих в теории и практике; широту и ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;
- значение практики и вопросов, возникающих в самой математике, для формирования и развития математической науки;
- идеи расширения числовых множеств как способа построения нового математического аппарата для решения практических задач и внутренних задач математики;
- значение идей, методов и результатов алгебры и математического анализа для построения моделей реальных процессов и ситуаций;
- возможности геометрического языка как средства описания свойств реальных предметов и их взаимного расположения;
- универсальный характер законов логики математических рассуждений, их применимость в различных областях человеческой деятельности;
- различие требований, предъявляемых к доказательствам в математике, естественных, социально-экономических и гуманитарных науках, на практике
- роль аксиоматики в математике; возможность построения математических теорий на аксиоматической основе; значение аксиоматики для других областей знания и для практики
- вероятностных характер различных процессов и закономерностей окружающего мира.

Элементы теории множеств и математической логики Обучающийся научится:

- Свободно оперировать понятиями: конечное множество, элемент множества, подмножество, пересечение, объединение и разность множеств, числовые множества на координатной прямой, отрезок, интервал, полуинтервал, промежуток с выколотой точкой, графическое представление множеств на координатной плоскости;
- задавать множества перечислением и характеристическим свойством;
- оперировать понятиями: утверждение, отрицание утверждения, истинные и ложные утверждения, причина, следствие, частный случай общего утверждения, контрпример;
- проверять принадлежность элемента множеству;
- находить пересечение и объединение множеств, в том числе представленных графически на числовой прямой и на координатной плоскости;
- проводить доказательные рассуждения для обоснования истинности утверждений.
- использовать числовые множества на координатной прямой и на координатной плоскости для описания реальных процессов и явлений;
- проводить доказательные рассуждения в ситуациях повседневной жизни, при решении задач из других предметов

- оперировать понятием определения, основными видами определений, основными видами теорем;
- понимать суть косвенного доказательства;

- оперировать понятиями счетного и несчетного множества;
- применять метод математической индукции для проведения рассуждений и доказательств и при решении задач.
- использовать теоретико-множественный язык и язык логики для описания реальных процессов и явлений, при решении задач других учебных предметов

Числовые и буквенные выражения

Обучающийся научится:

- Свободно оперировать понятиями: натуральное число, множество натуральных чисел, целое число, множество целых чисел, обыкновенная дробь, десятичная дробь, смешанное число, рациональное число, множество рациональных чисел, иррациональное число, корень степени п, действительное число, множество действительных чисел, геометрическая интерпретация натуральных, целых, рациональных, действительных чисел;
- выполнять арифметические действия, сочетая устные и письменные приемы, применение вычислительных устройств; находить значения корня натуральной степени, степени с рациональным показателем, логарифма, используя при необходимости вычислительные устройства; пользоваться оценкой и прикидкой при практических расчетах;
- выполнять округление рациональных и иррациональных чисел с заданной точностью;
- сравнивать действительные числа разными способами;
- упорядочивать числа, записанные в виде обыкновенной и десятичной дроби, числа, записанные с использованием арифметического квадратного корня, корней степени больше 2;
- находить НОД и НОК разными способами и использовать их при решении задач;
- выполнять вычисления и преобразования выражений, содержащих действительные числа, в том числе корни натуральных степеней;
- выполнять стандартные тождественные преобразования тригонометрических, логарифмических, степенных, иррациональных выражений.
- понимать и объяснять разницу между позиционной и непозиционной системами записи чисел;
- переводить числа из одной системы записи (системы счисления) в другую;
- применять понятия, связанные с делимостью целых чисел, при решении математических задач;
- доказывать и использовать признаки делимости суммы и произведения при выполнении вычислений и решении задач;
- находить корни многочленов с одной переменной, раскладывать многочлены на множители;
- выполнять действия с комплексными числами, пользоваться геометрической интерпретацией комплексных чисел, в простейших случаях находить комплексные корни уравнений с действительными коэффициентами;
- проводить преобразования числовых и буквенных выражений, включающих степени, радикалы, логарифмы и тригонометрические функции.
- выполнять практические расчеты по формулам, включая формулы, содержащие степени, радикалы, логарифмы и тригонометрические функции, при необходимости используя справочные материалы и простейшие вычислительные устройства.
- выполнять и объяснять сравнение результатов вычислений при решении практических задач, в том числе приближенных вычислений, используя разные способы сравнений;
- записывать, сравнивать, округлять числовые данные реальных величин с использованием разных систем измерения;
- составлять и оценивать разными способами числовые выражения при решении практических задач и задач из других учебных предметов

- свободно оперировать числовыми множествами при решении задач;
- понимать причины и основные идеи расширения числовых множеств;
- владеть основными понятиями теории делимости при решении стандартных задач

- иметь базовые представления о множестве комплексных чисел;
- свободно выполнять тождественные преобразования тригонометрических, логарифмических, степенных выражений;
- владеть формулой бинома Ньютона.

Функции и графики

Обучающийся научится:

- Владеть понятиями: зависимость величин, функция, аргумент и значение функции, область определения и множество значений функции, график зависимости, график функции, нули функции, промежутки знакопостоянства, возрастание на числовом промежутке, убывание на числовом промежутке, наибольшее и наименьшее значение функции на числовом промежутке, периодическая функция, период, четная и нечетная функции; уметь применять эти понятия при решении задач;
- владеть понятием степенная функция; строить ее график и уметь применять свойства степенной функции при решении задач;
- владеть понятиями показательная функция, экспонента; строить их графики и уметь применять свойства показательной функции при решении задач;
- владеть понятием логарифмическая функция; строить ее график и уметь применять свойства логарифмической функции при решении задач;
- владеть понятиями тригонометрические функции; строить их графики и уметь применять свойства тригонометрических функций при решении задач;
- владеть понятием обратная функция; применять это понятие при решении задач;
- применять при решении задач свойства функций: четность, периодичность, ограниченность;
- применять при решении задач преобразования графиков функций;
- владеть понятиями числовая последовательность, арифметическая и геометрическая прогрессия;
- применять при решении задач свойства и признаки арифметической и геометрической прогрессий.
- определять по графикам и использовать для решения прикладных задач свойства реальных процессов и зависимостей (наибольшие и наименьшие значения, промежутки возрастания и убывания функции, промежутки знакопостоянства, асимптоты, точки перегиба, период и т.п.);
- интерпретировать свойства в контексте конкретной практической ситуации;.
- определять по графикам простейшие характеристики периодических процессов в биологии, экономике, музыке, радиосвязи и др. (амплитуда, период и т.п.)

Обучающийся получит возможность научиться:

- владеть понятием асимптоты и уметь его применять при решении задач;
- применять методы решения простейших дифференциальных уравнений первого и второго порядков

11 класс

Начала математического анализа

Обучающийся научится:

- Владеть понятием бесконечно убывающая геометрическая прогрессия и уметь применять его при решении задач;
- находить сумму бесконечно убывающей геометрической прогрессии;
- применять для решения задач теорию пределов;
- владеть понятиями бесконечно большие и бесконечно малые числовые последовательности и уметь сравнивать бесконечно большие и бесконечно малые последовательности;
- владеть понятиями: производная функции в точке, производная функции;
- вычислять производные элементарных функций и их комбинаций;
- исследовать функции на монотонность и экстремумы;
- решать задачи на нахождение наибольшего и наименьшего значения функции на отрезке;

- строить графики и применять к решению задач, в том числе с параметром;
- владеть понятием касательная к графику функции и уметь применять его при решении задач;
- владеть понятиями первообразная функция, определенный интеграл;
- применять теорему Ньютона-Лейбница и ее следствия для решения задач.
- вычислять площадь криволинейной трапеции.
- решения геометрических, физических, экономических и других прикладных задач, в том числе задач на наибольшие и наименьшие значения с применением аппарата математического анализа.
- решать прикладные задачи из биологии, физики, химии, экономики и других предметов, связанные с исследованием характеристик процессов;
- интерпретировать полученные результаты

Обучающийся получит возможность научиться:

- свободно владеть стандартным аппаратом математического анализа для вычисления производных функции одной переменной;
- свободно применять аппарат математического анализа для исследования функций и построения графиков, в том числе исследования на выпуклость;
- оперировать понятием первообразной функции для решения задач;
- овладеть основными сведениями об интеграле Ньютона—Лейбница и его простейших применениях;
- оперировать в стандартных ситуациях производными высших порядков;
- уметь применять при решении задач свойства непрерывных функций;
- уметь применять при решении задач теоремы Вейерштрасса;
- уметь выполнять приближенные вычисления (методы решения уравнений, вычисления определенного интеграла);
- уметь применять приложение производной и определенного интеграла к решению задач естествознания:
- владеть понятиями вторая производная, выпуклость графика функции и уметь исследовать функцию на выпуклость

Уравнения и неравенства

Обучающийся научится:

- свободно оперировать понятиями: уравнение, неравенство, равносильные уравнения и неравенства, уравнение, являющееся следствием другого уравнения, уравнения, равносильные на множестве, равносильные преобразования уравнений;
- решать рациональные, показательные и логарифмические уравнения и неравенства, иррациональные и тригонометрические уравнения, их системы, в том числе некоторые уравнения 3-й и 4-й степеней;
- применять теорему Безу к решению уравнений;
- применять теорему Виета для решения некоторых уравнений степени выше второй;
- доказывать несложные неравенства;
- решать текстовые задачи с помощью составления уравнений, и неравенств, интерпретируя результат с учетом ограничений условия задачи;
- изображать на координатной плоскости множества решений уравнений и неравенств с двумя переменными и их систем.
- находить приближенные решения уравнений и их систем, используя графический метод;
- решать уравнения, неравенства и системы с применением графических представлений, свойств функций, производной.
- составлять и решать уравнения, неравенства, их системы при решении задач других учебных предметов;
- составлять уравнение, неравенство или их систему, описывающие реальную ситуацию или прикладную задачу, интерпретировать полученные результаты;

• использовать программные средства при решении отдельных классов уравнений и неравенств

Обучающийся получит возможность научиться:

- свободно определять тип и выбирать метод решения показательных и логарифмических уравнений и неравенств, иррациональных уравнений и неравенств, тригонометрических уравнений и неравенств, их систем;
- свободно решать системы линейных уравнений;
- решать основные типы уравнений и неравенств с параметрами;
- применять при решении задач неравенства Коши Буняковского, Бернулли;
- иметь представление о неравенствах между средними степенными

Элементы комбинаторики, статистики и теории вероятностей Обучающийся научится:

- Оперировать основными описательными характеристиками числового набора, понятием генеральная совокупность и выборкой из нее;
- оперировать понятиями: частота и вероятность события, сумма и произведение вероятностей, вычислять вероятности событий на основе подсчета числа исходов;
- владеть основными понятиями комбинаторики и уметь их применять при решении задач;
- иметь представление об основах теории вероятностей;
- иметь представление о дискретных и непрерывных случайных величинах и распределениях, о независимости случайных величин;
- иметь представление о математическом ожидании и дисперсии случайных величин;
- иметь представление о совместных распределениях случайных величин;
- понимать суть закона больших чисел и выборочного метода измерения вероятностей;
- иметь представление о нормальном распределении и примерах нормально распределенных случайных величин;
- иметь представление о корреляции случайных величин.
- вычислять или оценивать вероятности событий в реальной жизни;
- выбирать методы подходящего представления и обработки данных

Обучающийся получит возможность научиться:

- иметь представление о выборочном коэффициенте корреляции и линейной регрессии;
- иметь представление о связи эмпирических и теоретических распределений;
- иметь представление о кодировании, двоичной записи, двоичном дереве;
- владеть основными понятиями теории графов (граф, вершина, ребро, степень вершины, путь в графе) и уметь применять их при решении задач;
- иметь представление о деревьях и уметь применять при решении задач;
- владеть понятием связность и уметь применять компоненты связности при решении задач;
- уметь осуществлять пути по ребрам, обходы ребер и вершин графа;
- владеть понятиями конечные и счетные множества и уметь их применять при решении задач;
- уметь применять метод математической индукции;

Геометрия

10 класс

Обучающийся научится:

- Владеть геометрическими понятиями при решении задач и проведении математических рассуждений;
- самостоятельно формулировать определения геометрических фигур, выдвигать гипотезы о новых свойствах и признаках геометрических фигур и обосновывать или опровергать их, обобщать или конкретизировать результаты на новых классах фигур, проводить в несложных случаях классификацию фигур по различным основаниям;
- исследовать чертежи, включая комбинации фигур, извлекать, интерпретировать и преобразовывать информацию, представленную на чертежах;

- решать задачи геометрического содержания, в том числе в ситуациях, когда алгоритм решения не следует явно из условия, выполнять необходимые для решения задачи дополнительные построения, исследовать возможность применения теорем и формул для решения задач;
- уметь формулировать и доказывать геометрические утверждения;
- владеть понятиями стереометрии: призма, параллелепипед, пирамида, тетраэдр;
- иметь представления об аксиомах стереометрии и следствиях из них и уметь применять их при решении задач;
- уметь строить сечения многогранников с использованием различных методов, в том числе и метода следов;
- иметь представление о скрещивающихся прямых в пространстве и уметь находить угол и расстояние между ними;
- применять теоремы о параллельности прямых и плоскостей в пространстве при решении задач:
- уметь применять параллельное проектирование для изображения фигур;
- уметь применять перпендикулярности прямой и плоскости при решении задач;
- владеть понятиями ортогональное проектирование, наклонные и их проекции, уметь применять теорему о трех перпендикулярах при решении задач;
- владеть понятиями расстояние между фигурами в пространстве, общий перпендикуляр двух скрещивающихся прямых и уметь применять их при решении задач;
- владеть понятием угол между прямой и плоскостью и уметь применять его при решении задач;
- владеть понятиями двугранный угол, угол между плоскостями, перпендикулярные плоскости и уметь применять их при решении задач;
- владеть понятиями призма, параллелепипед и применять свойства параллелепипеда при решении задач;
- владеть понятием прямоугольный параллелепипед и применять его при решении задач;
- владеть понятиями пирамида, виды пирамид, элементы правильной пирамиды и уметь применять их при решении задач;
- иметь представление о теореме Эйлера, правильных многогранниках;
- владеть понятием площади поверхностей многогранников и уметь применять его при решении задач;
- владеть понятиями тела вращения (цилиндр, конус, шар и сфера), их сечения и уметь применять их при решении задач;
- владеть понятиями касательные прямые и плоскости и уметь применять из при решении задач;
- иметь представления о вписанных и описанных сферах и уметь применять их при решении залач:
- владеть понятиями объем, объемы многогранников, тел вращения и применять их при решении задач;
- иметь представление о развертке цилиндра и конуса, площади поверхности цилиндра и конуса, уметь применять их при решении задач;
- иметь представление о площади сферы и уметь применять его при решении задач;
- уметь решать задачи на комбинации многогранников и тел вращения;
- иметь представление о подобии в пространстве и уметь решать задачи на отношение объемов и площадей поверхностей подобных фигур.
- составлять с использованием свойств геометрических фигур математические модели для решения задач практического характера и задач из смежных дисциплин, исследовать полученные модели и интерпретировать результат

- иметь представление об аксиоматическом методе;
- владеть понятием геометрические места точек в пространстве и уметь применять их для решения задач;
- уметь применять для решения задач свойства плоских и двугранных углов, трехгранного угла, теоремы косинусов и синусов для трехгранного угла;
- владеть понятием перпендикулярное сечение призмы и уметь применять его при решении задач;
- иметь представление о двойственности правильных многогранников;
- владеть понятиями центральное и параллельное проектирование и применять их при построении сечений многогранников методом проекций;
- иметь представление о развертке многогранника и кратчайшем пути на поверхности многогранника;
- иметь представление о конических сечениях;
- иметь представление о касающихся сферах и комбинации тел вращения и уметь применять их при решении задач;
- применять при решении задач формулу расстояния от точки до плоскости;
- владеть разными способами задания прямой уравнениями и уметь применять при решении задач;
- применять при решении задач и доказательстве теорем векторный метод и метод координат;
- иметь представление об аксиомах объема, применять формулы объемов прямоугольного параллелепипеда, призмы и пирамиды, тетраэдра при решении задач;
- применять теоремы об отношениях объемов при решении задач;
- применять интеграл для вычисления объемов и поверхностей тел вращения, вычисления площади сферического пояса и объема шарового слоя;
- иметь представление о движениях в пространстве: параллельном переносе, симметрии относительно плоскости, центральной симметрии, повороте относительно прямой, винтовой симметрии, уметь применять их при решении задач;
- иметь представление о площади ортогональной проекции;
- иметь представление о трехгранном и многогранном угле и применять свойства плоских углов многогранного угла при решении задач;
- иметь представления о преобразовании подобия, гомотетии и уметь применять их при решении задач;
- уметь решать задачи на плоскости методами стереометрии;
- уметь применять формулы объемов при решении задач

11 класс

Векторы и координаты в пространстве

Обучающийся научится:

- Владеть понятиями векторы и их координаты;
- уметь выполнять операции над векторами;
- использовать скалярное произведение векторов при решении задач;
- применять уравнение плоскости, формулу расстояния между точками, уравнение сферы при решении задач;
- применять векторы и метод координат в пространстве при решении задач

Обучающийся получит возможность научиться:

- находить объем параллелепипеда и тетраэдра, заданных координатами своих вершин;
- задавать прямую в пространстве;
- находить расстояние от точки до плоскости в системе координат;
- находить расстояние между скрещивающимися прямыми, заданными в системе координат

История математики

- Иметь представление о вкладе выдающихся математиков в развитие науки;
- понимать роль математики в развитии России

Методы математики

Обучающийся научится:

- Использовать основные методы доказательства, проводить доказательство и выполнять опровержение;
- применять основные методы решения математических задач;
- на основе математических закономерностей в природе характеризовать красоту и совершенство окружающего мира и произведений искусства;
- применять простейшие программные средства и электронно-коммуникационные системы при решении математических задач;
- пользоваться прикладными программами и программами символьных вычислений для исследования математических объектов

Обучающийся получит возможность научиться:

• применять математические знания к исследованию окружающего мира (моделирование физических процессов, задачи экономики)

Общая характеристика курса математики 10-11 с углубленным изучением математики При изучении курса математики на углубленном уровне продолжаются и получают развитие содержательные линии: «Алгебра», «Функции», «Геометрия», «Элементы комбинаторики, теории вероятностей, статистики и логики», вводится линия «Начала математического анализа». В рамках указанных содержательных линий решаются следующие задачи:

- систематизация сведений о числах; изучение новых видов числовых выражений и формул; совершенствование практических навыков и вычислительной культуры, расширение и совершенствование алгебраического аппарата, сформированного в основной школе, и его применение к решению математических и нематематических задач;
- расширение и систематизация общих сведений о функциях, пополнение класса изучаемых функций, иллюстрация широты применения функций для описания и изучения реальных зависимостей;
- развитие представлений о вероятностно-статистических закономерностях в окружающем мире, совершенствование интеллектуальных и речевых умений путем обогащения математического языка, развития логического мышления;
- знакомство с основными идеями и методами математического анализа.

Алгебра нацелена на формирование математического аппарата для решения задач из математики, смежных предметов, окружающей реальности. Язык алгебры подчеркивает значение математики как языка для построения математических моделей, процессов и явлений реального мира. Одной из основных задач изучения алгебры является развитие алгоритмического мышления, необходимого, в частности, для освоения курса информатики; овладение навыками дедуктивных рассуждений.

Преобразование символических форм вносит свой специфический вклад в развитие воображения, способностей к математическому творчеству. Другой важной задачей изучения алгебры является получение школьниками конкретных знаний о функциях как важнейшей математической модели для описания и исследования разнообразных процессов (равномерных, равноускоренных, экспоненциальных, периодических и др.), для формирования у учащихся представлений о роли математики в развитии цивилизации и культуры.

Геометрия — один из важнейших компонентов математического образования, необходимая для приобретения конкретных знаний о пространстве и практически значимых умений, формирования языка описания объектов окружающего мира, для развития пространственного воображения и интуиции, математической культуры, для эстетического воспитания обучающихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства.

Элементы логики, комбинаторики, статистики и теории вероятностей становятся обязательным компонентом школьного образования, усиливающим его прикладное и практическое значение. Этот материал необходим, прежде всего, для формирования функциональной грамотности — умений воспринимать и анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, производить простейшие вероятностные расчеты. Изучение основ комбинаторики позволит обучающимся осуществлять рассмотрение случаев, перебор и подсчет числа вариантов, в том числе в простейших прикладных задачах. При изучении статистики и теории вероятностей обогащаются представления о современной картине мира и методах его исследования, формируется понимание роли статистики как источника социально значимой информации и закладываются основы вероятностного

мышления.

VI. Содержание учебного предмета (с углубленным изучением) Числовые и буквенные выражения

Делимость целых чисел. Деление с остатком. Сравнения. Решение задач с целочисленными неизвестными. Комплексные числа. Геометрическая интерпретация комплексных чисел. Действительная и мнимая часть, модуль и аргумент комплексного числа. Алгебраическая и тригонометрическая формы записи комплексных чисел. Арифметические действия над комплексными числами в разных формах записи. Комплексно сопряженные числа. Возведение в натуральную степень (формула Муавра). Основная теорема алгебры. Многочлены от одной переменной. Делимость многочленов. Деление многочленов с остатком. Рациональные корни многочленов с целыми коэффициентами. Схема Горнера. Теорема Безу. Число корней многочлена. Многочлены от двух переменных. Формулы сокращенного умножения для старших степеней. Бином Ньютона. Многочлены от нескольких переменных, симметрические многочлены. Корень степени п >1 и его свойства. Степень с рациональным показателем и её свойства. Понятие о степени с лействительным показателем. Свойства степени с лействительным

свойства. Понятие о степени с действительным показателем. Свойства степени с действительным показателем. Логарифм числа. Основное логарифмическое тождество. Логарифм произведения, частного, степени; переход к новому основанию. Десятичный и натуральный логарифмы, числе e. Преобразования выражений, включающих арифметические операции, а также операции возведения в степень и логарифмирования.

Тригонометрия

Синус, косинус, тангенс, котангенс произвольного угла. Радианная мера угла. Синус, косинус, тангенс и котангенс числа. Основные тригонометрические тождества. Формулы приведения. Синус, косинус и тангенс суммы и разности двух углов. Синус и косинус двойного угла. Формулы половинного угла. Преобразования суммы тригонометрических функций в произведение и произведения в сумму. Выражения тригонометрических функций через тангенс половинного аргумента. Преобразования тригонометрических выражений. Простейшие тригонометрические уравнения. Решение тригонометрических уравнений. Простейшие тригонометрические неравенства. Арксинус, арккосинус, арккотангенс числа.

Функции

Функции. Область определения и множество значений. График функции. Построение графиков функций, заданных различными способами. Свойства функций: монотонность, четность и нечетность, периодичность, ограниченность. Промежутки возрастания и убывания, наибольшее и наименьшее значения, точки экстремума (локального максимума и минимума). Выпуклость функции. Графическая интерпретация. Примеры функциональных зависимостей в реальных процессах и явлениях. Сложная функция (композиция функций). Взаимообратные функции. Область определения и область значений обратной функции. График обратной функции. Нахождение функции обратной данной. Степенная функция с натуральным показателем, её свойства и график.

Вертикальные и горизонтальные асимптоты графиков. Графики дробно-линейных функций. Тригонометрические функции, их свойства и графики; периодичность, основной период. Обратные тригонометрические функции, их свойства и графики. Показательная функция (экспонента), её свойства и график. Логарифмическая функция, её свойства и график. Преобразования графиков: параллельный перенос, симметрия относительно осей координат и симметрия относительно начала координат, симметрия относительно прямой y = x, растяжение и сжатие вдоль осей координат.

Начала математического анализа

Понятие о пределе последовательности. Существование предела монотонной ограниченной последовательности. Длина окружности и площадь круга как пределы последовательностей. Бесконечно убывающая геометрическая прогрессия и ее сумма. Теорема о пределах последовательностей. Переход к пределам в неравенствах. Понятие о непрерывности функции. Основные теоремы о непрерывных функциях. Понятие о пределе в точке. Поведение функций на бесконечности. Асимптоты. Понятие о производной функции, физический и геометрический смысл производной. Уравнение касательной к графику функции. Производные суммы, разности, произведения, частного. Производные основных элементарных функций. Производные сложной и обратной функции. Вторая производная. Применение производной к исследованию функций и построению графиков. Использование производных для решения уравнений и неравенств, текстовых, физических и геометрических задач, нахождение наибольших и наименьших значений. Площадь криволинейной трапеции. Понятие об определённом интеграле. Первообразная. Первообразные элементарных функций. Правила вычисления первообразной. Формула Ньютона-Лейбница. Примеры использования производной для нахождения наилучшего решения в прикладных. Нахождение скорости для процесса, заданного формулой или графиком. Примеры применения интеграла в физике и геометрии. Вторая производная и ее физический смысл.

Уравнения и неравенства

Решение рациональных, показательных, логарифмических уравнений и неравенств. Решение иррациональных уравнений и неравенств. Основные приемы решения систем уравнений: подстановка, алгебраическое сложение, введение новых переменных. Равносильность уравнений, неравенств, систем. Решение простейших систем уравнений с двумя неизвестными (простейшие типы). Решение систем неравенств с одной переменной. Доказательство неравенства. Неравенство о среднем арифметическом и среднем геометрическом двух чисел. Использование свойств и графиков функций при решении уравнений и неравенств. Метод интервалов. Изображение на координатной плоскости множества решений уравнений и неравенств с двумя переменными и их систем.

Применение математических методов для решения содержательных задач из различных областей науки и практики. Интерпретация результата, учет реальных ограничений.

Элементы комбинаторики, статистики и теории вероятностей

Табличное и графическое представление данных. Числовые характеристики рядов данных. Условная вероятность. Правило умножения вероятностей. Формула полной вероятности. Формула Байеса. Дискретные случайные величины и распределения. Совместные распределения. Распределение суммы и произведения независимых случайных величин. Математическое ожидание и дисперсия случайной величины. Математическое ожидание и дисперсия суммы случайных величин. Бинарная случайная величина, распределение Бернулли. Геометрическое распределение.

Биномиальное распределение и его свойства. Непрерывные случайные величины. Плотность вероятности. Функция распределения. Равномерное распределение. Поочередный и одновременный выбор нескольких элементов из конечного множества. Формулы числа перестановок, сочетаний, размещений. Решение комбинаторных задач. Формула бинома Ньютона.

Свойства биномиальных коэффициентов. Треугольник Паскаля. Элементарные и сложные события. Рассмотрение случаев и вероятность суммы несовместных событий, вероятность противоположного события. Понятие o

независимости событий. Вероятность и статистическая частота наступления события.

Геометрия на плоскости

Свойства биссектрисы угла треугольника. Решение треугольников. Вычисление биссектрис, медиан, высот, радиусов вписанной и описанной окружностей. Формулы площади треугольника: формула Герона, выражения площади треугольника через радиус вписанной и описанной окружностей. Вычисления углов с вершиной внутри и вне круга угла между хордами и касательной.

Теорема о произведении отрезков хорд. Теорема о касательной и секущей. Теорема о сумме квадратов сторон и диагоналей параллелограмма. Вписанные и описанные многоугольники. Свойства и признаки вписанных и описанных четырехугольников. Геометрические места точек. Решение задач с помощью геометрических преобразований и геометрических мест.

Прямые и плоскости в пространстве

Основные понятия стереометрии (точка, прямая, плоскость, пространство). Пересекающиеся, параллельные и скрещивающиеся прямые. Угол между прямыми в пространстве. Перпендикулярность прямых. Параллельность и перпендикулярность прямой и плоскости, признаки и свойства. Теорема о трех перпендикулярах. Перпендикуляр и наклонная. Угол между прямой и плоскостью. Параллельность плоскостей, перпендикулярность плоскостей, признаки и свойства.

Двугранный угол, линейный угол двугранного угла. Расстояния от точки до плоскости. Расстояние от прямой до плоскости. Расстояние между параллельными плоскостями. Расстояние между скрещивающимися прямыми. Параллельное проектирование. Ортогональное проектирование.

Многогранники

Вершины, ребра, грани многогранника. Развертка. Выпуклые многогранники. Теорема Эйлера. Призма, ее основания, боковые ребра, высота, боковая поверхность. Прямая и наклонная призма. Правильная призма. Параллелепипед. Куб. Пирамида, ее основание, боковые ребра, высота, боковая поверхность. Треугольная пирамида. Правильная пирамида. Усеченная пирамида. Построение сечений многогранников методом следов. Центральное проектирование. Построение сечений многогранников методом проекций. Симметрии в кубе, в параллелепипеде, в призме и пирамиде. Понятие о симметрии в пространстве (центральная, осевая, зеркальная). Примеры симметрий в окружающем мире. Сечения многогранника. Построение сечений. Представление о правильных многогранниках (тетраэдр, куб, октаэдр, додекаэдр и икосаэдр).

Координаты и векторы

Декартовы координаты в пространстве. Уравнение плоскости. Формула расстояния между двумя точками. Уравнения сферы и плоскости. Формула расстояния от точки до плоскости. Способы задания прямой уравнениями. Векторы. Модуль вектора. Равенство векторов. Сложение векторов и умножение вектора на число. Угол между векторами. Координаты вектора. Скалярное произведение векторов. Коллинеарные векторы. Разложение вектора по двум неколлинеарным векторам. Компланарные векторы. Разложение по трем некомпланарным векторам. Решение задач и доказательство теорем с помощью векторов и методом координат.

Тела и поверхности вращения

Цилиндр и конус. Усеченный конус. Основание, высота, боковая поверхность, образующая, развертка. *Осевые сечения и сечения параллельные основанию*. Шар и сфера, их сечения. *Эллипс, гипербола, парабола как сечения конуса*. Касательная плоскость к сфере. *Сфера вписанная в*

многогранник. Сфера описанная около многогранника. Комбинации тел вращения. Цилиндрические и конические поверхности.

Объемы тел и площади их поверхностей

Понятие об объеме тела. Отношение объемов подобных тел. Формулы объема куба, прямоугольного параллелепипеда, призмы, цилиндра. Формулы объема пирамиды и конуса. Формулы площади поверхностей цилиндра и конуса. Формулы объема шара и площади сферы. Приложения интеграла к вычислению объемов и поверхностей тел вращения. Площадь сферического пояса. Объем шарового слоя. Применение объемов при решении задач. Подобие в пространстве. Отношение объемов и площадей поверхностей подобных фигур. Движения в пространстве: параллельный перенос, симметрия относительно плоскости, центральная симметрия, поворот относительно прямой.

VII. УЧЕБНО - ТЕМАТИЧЕСКИЙ ПЛАН

<i>№</i>	Раздел	Кол-во	
		часов	
10 КЛАСС (34 уч.н.\ 6час в неделю)			
1.	Повторение (5 часов)	5	
2.	Действительные числа (12 часов)	12	
3.	Параллельность прямых и плоскостей (21 час)	21	
4.	Рациональные уравнения и неравенства (18 часов)	18	
5.	Перпендикулярность прямых и плоскостей (17 часов)	17	
6.	Корень степени п (12 часов)	12	
<i>7</i> .	Степень положительного числа (13 часов)	13	
8.	Многогранники (14 часов)	14	
9.	Логарифмы (6 часов)	6	
10.	Показательные и логарифмические уравнения (11 часов)	11	
11.	Векторы в пространстве (бчасов)	6	
12.	Тригонометрия (45 часов)	45	
13.	Элементы теории вероятностей (13 часов)	13	
14.	Повторение (11 часов)	11	
Итого з	а 10 класс учебных часов	204	
	11 КЛАСС (34 уч.н.\ 6 часа в неделю)		
1.	Повторение (4 часа)	4	
2.	Функции и их графики (9 часов)	9	
3.	Предел функции и непрерывность (5 часов)	5	
4.	Метод координат в пространстве (16 часов)	16	
5.	Обратные функции (6 часов)	6	
6.	Производная (11 часов)	11	
<i>7</i> .	Применение производной (16 часов)	16	
8.	Цилиндр, конус и шар (15 часов)	15	
9.	Первообразная и интеграл (13 часов)	13	
10.	Равносильность уравнений и неравенств (12 часов)	12	
11.	Равносильность уравнений и неравенств системам -13 ч	13	
12.	Равносильность уравнений на множествах (7 часов)	7	
13.	Равносильность неравенств на множествах (7 часов)	7	
14.	Метод промежутков для уравнений и неравенств (5 часов)	5	
15.	Использование свойств функций при решении уравнений и неравенств	5	
	(5 часов)		
16.	Системы уравнений с несколькими неизвестными (7 часов)	7	

17.	Объемы тел 17	17
18.	Комплексные числа (10 часов)	10
19.	Повторение (26 часов)	26
Итого за 11 класс учебных часов		204

VIII. Учебно-методическое обеспечение учебного процесса

- 1. С.М. Никольский, М.К.Потапов, Н.Н.Решетников, А.В.Шевкин «Алгебра и начала математического анализа 10 класс», М.: Просвещение, 2020г,
- 2. С.М. Никольский, М.К.Потапов, Н.Н.Решетников, А.В.Шевкин «Алгебра и начала математического анализа 11 класс», М.: Просвещение, 2020г,
- 3. Л. С. Атанасян, В. Ф. Бутузов, С. В. Кадомцев и др. Геометрия 10—11 класс, М.: Просвещение, 2020г.
- 4. Потапов М. К., Шевкин А. В. «Алгебра и начала математического анализа. Дидактические материалы. 10 класс» М.: Просвещение, 2020г.
- 5. Потапов М. К., Шевкин А. В. «Алгебра и начала математического анализа. Дидактические материалы. 11 класс» М.: Просвещение, 2020г.
- 6. Зив Б. Г. Геометрия. Дидактические материалы. 10 класс. М.: Просвещение, 2020г.
- 7. Зив Б. Г. Геометрия. Дидактические материалы. 11 класс. М.: Просвещение, 2020г.

Информационно-коммуникативные средства

- 1. Компьютер, проектор
- 2.Ресурсы Единой коллекции цифровых образовательных ресурсов (http://school-collection.edu.ru)
 - 3. Презентации, видеоролики.